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1 Project description

The project Automatization of digital forensics and incident response (hereinafter referred
to as “ADFIR”) is funded by the European Union — Next GenerationEU through the Recovery
and Resilience Plan of the Slovak Republic under project No. ¢. 09-105-03-V02-00079. This
project addresses one of the key challenges in cybersecurity and information security — how
to process the massive volume of digital evidence generated during cybersecurity incidents or
forensic investigations. Currently, this process is highly demanding in terms of human
resources and time. Therefore, automation using machine learning methods can significantly
improve the quality of digital forensic analysis and reduce the time required to perform it.
Overall, this enables security teams to respond more effectively to cyber threats. Main
benefits of this project are:

o Accelerated Resolution of Cybersecurity Incidents. The project ADFIR introduces
automated approaches to collecting, processing, and analyzing digital traces. As a
result, security teams can identify the causes of incidents more quickly and adopt
effective measures to address them.

e Reduced Workload for Forensic Analysts. Routine and time-consuming tasks involved
in processing digital traces will be replaced by automated methods. This will allow
analysts to focus on more complex cases and strategic decision-making.

e Higher Quality and Consistency of Outputs. The use of unified methodologies and
tools ensures that the processed digital traces will be more accurate, consistent, and
easily verifiable. This significantly reduces the risk of errors caused by human factors.

e Potential Use in Criminal Proceedings. The project outputs will be developed in
compliance with legal requirements and standards, allowing the digital traces to be
accepted as relevant evidence for investigations and court proceedings.

Financované , URAD PODPREDSEDU VLADY L_l ’ i

Eurépskou tiniou PLAN rOBNOVY_' SLOVENSKE) REPUBLIKY D( VYSKUMNA
L - ‘ PRE PLAN OBNOVY tsxumnk ’

NextGenerationEU A ZNALOSTNU EKONOMIKU VA/A e AGENTURA




2 Introduction

The development of machine learning methods and advanced data analysis also has a
significant impact on the field of digital forensic analysis. However, automated processing of
large amounts of forensic data, identification of behavior patterns, correlation of events, and
detection of anomalies require high-quality, well-structured, and representative data sets.
The way in which these datasets are created has a fundamental impact on the usability and
reliability of the resulting models.

The development of machine learning methods and advanced data analysis is also having a
significant impact on the field of digital forensic analysis. However, automated processing of
large amounts of forensic data, identification of behavior patterns, correlation of events, and
anomaly detection require high-quality, well-structured, and representative data sets. The
way these data sets are created has a fundamental impact on the usability and reliability of
the resulting models.

One of the main challenges in the field of digital forensic analysis is the lack of high-quality
datasets that meet several key requirements, such as the availability of comprehensive case
studies and a sufficient number of relevant digital artifacts [1,2]. This problem is highlighted
in several scientific publications, which emphasize the need for well-structured datasets
suitable for forensic purposes and at the same time point out the overall lack of such
resources in this area [1,2,3].

From the perspective of model learning and the application of machine learning in digital
forensic analysis, three basic types of datasets can be identified:
1. Real datasets obtained directly from the resolution of actual security incidents,
2. Created datasets from simulated attacks and attacker techniques, carried out in a
controlled environment,
3. Datasets originating from CTF (Capture The Flag) competitions, in which attacks are
simulated and analytical tasks and questions are subsequently prepared.

Each of these approaches has its advantages, limitations, and specifics that must be taken into
account when designing the research methodology and interpreting the results.

2.1 Real datasets from actual security incidents

Real data from actual security incidents are the most valuable source for digital forensic
analysis in terms of authenticity and realism. They capture the actual behavior of attackers,
real system configuration errors, unforeseen combinations of events, and the complex
dynamics of incidents in a production environment. For this reason, they provide an ideal basis
for the development and testing of forensic analysis methods.

However, the use of such data presents significant problems and limitations. Real-world
datasets often cover only a limited range of attacker techniques, tactics, and procedures

Financované , URAD PODPREDSEDU VLADY L—l ’ i

Eurépskou uniou PLAN roanovv" SLOVENSKE) REPUBLIKY D( VYSKUMNA
L - ‘ PRE PLAN OBNOVY tsxumnk -

NextGenerationEU A ZNALOSTNU EKONOMIKU VA/A e AGENTURA




(TTPs) that occurred in a given security incident. They are therefore not a representative cross-
section of the entire spectrum of possible attacks, but rather a specific and context-bound
case. In addition, real-world security incidents often vary in the quality and completeness of
available artifacts, as data may be corrupted, deleted, or incomplete.

However, the biggest obstacle is the practical impossibility of sharing this data. This data is
sensitive in nature and may contain personal data and other sensitive information (e.g.,
intellectual property, trade secrets), and its use is restricted by legislative frameworks,
personal data protection, trade secrets, and internal security policies of organizations. For this
reason, its use for academic research and development, replicability of experiments, and
comparability of results is significantly limited. This is also confirmed in article [4], where the
authors point out in their findings that when creating a dataset, it is important to ensure that
the datasets are not only created correctly, but also reflect scenarios that may occur in real-
life situations. They also emphasize that creating and sharing datasets can be challenging due
to legal restrictions or data management and protection. The same is stated by Breitinger and
Jotterand [3], who concluded that creating and sharing datasets is essential for progress and
for enabling the comparison of results. They also emphasized the need to be cautious with
regard to specific laws, such as copyright or licensing.

2.2 Datasets from simulated attacks and attacker techniques

The second approach to dataset creation is targeted simulation of attacks and attacker
techniques in a controlled and isolated environment. In this case, attacks are carried out
consciously and systematically. Attacks are often carried out based on known frameworks,
such as MITRE ATT&CK, with the aim of generating forensic artifacts corresponding to specific
techniques and phases of the attack.

The main advantage of this approach is control over the scenario. The researcher or developer
knows exactly which techniques were used, in what order, and for what purpose. This allows
for accurate data labeling, the creation of balanced datasets, and systematic testing of models'
ability to detect specific types of behavior. Simulated datasets are also suitable for creating
reference data for experimental comparisons and validation studies.

On the other hand, simulated attacks also have their limitations. Even with a high level of
expertise, the simulation may be simplified and may not capture all the unpredictable aspects
of real incidents, such as attacker errors, combined attacks by multiple actors, or long-term
low-intensity campaigns. Nevertheless, simulated attacks represent an important
compromise between realism and data controllability.

2.3 Datasets from CTF competitions

The third category consists of datasets from CTF (Capture the Flag) competitions, which have
long been used in cybersecurity education and training. CTF tasks are typically designed to
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simulate a specific security incident or part of it, and participants answer predefined questions
by analyzing digital traces.

The use of CTF datasets has certain inherent limitations. CTF scenarios are often artificially
created, focused on a specific type of attack, and usually carried out by a single attacker. Such
a model may not fully reflect reality, where multiple attackers may be involved, multi-stage
attacks may take place, and the outcome of the investigation is not known in advance.
Furthermore, CTF data implicitly assumes the existence of a solution, while real-world security
incidents are characterized by a high degree of uncertainty and ambiguity.

Despite these limitations, CTF competitions have significant parallels with real-world security
incidents. Even in CTF scenarios, attackers use specialized tools, techniques, and tactics that
are often identical or very similar to those used in practice. The process of examining data and
digital traces, correlating artifacts, and reconstructing events is comparable to real-world
digital forensic analysis.

Although the digital traces in CTF tasks are artificially created, the process of data analysis
and forensic artifact extraction itself is largely the same as in the investigation of real
incidents. Furthermore, the structured nature of CTF tasks, often based on questions and
answers, can promote a systematic analytical approach that is transferable to the real world
and can lead to faster problem identification and resolution.

2.4 Motivation for the selection of data sources

In view of the above, we decided to focus this study primarily on datasets created from
simulated attacker techniques and datasets originating from CTF competitions.

The main reason is the limited availability of data from real security incidents and the practical
impossibility of sharing it in an academic and research environment.

The focus on Windows operating system disk images is based on the scope and complexity
of digital forensic analysis as a discipline. Individual subdomains, such as network forensic
analysis, forensic analysis of Windows, Linux, or mobile devices, differ significantly in data
structure, tools used, and analytical procedures. Each of these areas requires specific methods
of data preprocessing and analysis, which makes a universal approach impossible.

By using simulated attacks and CTF datasets in a Windows environment, it is possible to create
reproducible, shareable, and methodologically controllable datasets that provide a suitable
basis for research and development of machine learning methods in digital forensic analysis.
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3 Method for forensic dataset creation based on attackers'
techniques

For the purpose of training and validating machine learning (ML) models designed to
automate forensic analysis, a dataset was created that faithfully reflects the behaviour of
modern attackers in the post-exploitation phase. Unlike synthetic datasets generated
randomly, in the ADFIR project we used a combination of automated simulation and manual
execution of advanced offensive TTPs (Tactics, Techniques, and Procedures - TTPs).

The data collection was conducted on a virtualized workstation designated as RDO5W-W11-1,
operating on Windows 11 (version 23H2) and hosting the Cymulate agent for testing purposes.
The underlying infrastructure utilizes the VMware ESXi hypervisor. The testing environment
simulates a standard corporate domain structure, where the endpoint is managed by two
redundant domain controllers running Windows Server 2022 Standard.

To generate synthetic yet realistic attack simulation, the Cymulate platform [5] was utilized
within the experimental environment. Cymulate is a Breach and Attack Simulation (BAS) tool
designed to continuously validate cyber resilience through automated attack simulations.

Unlike traditional penetration testing, Cymulate allows for the execution of comprehensive
attack scenarios in a controlled environment without disrupting production operations.
Crucially for this research, the platform generates high-fidelity digital footprints at both the
operating system and network levels.

For the purposes of the research, the following features of the platform were essential:

e MITRE ATT&CK® Alignment: Cymulate simulates the Tactics, Techniques, and
Procedures (TTPs) of real-world adversaries mapped to the MITRE ATT&CK framework.
This ensures that the generated data reflects current trends in cyber threats (e.g., APT
groups, ransomware, and advanced trojans).

e Generation of Forensic Artifacts: Although the attacks are simulated, the interaction
with the operating system is authentic. The execution of these simulations leaves
specific traces necessary for training the forensic automation tool, including:

o Entries in system logs (Windows Event Logs).

o Modifications to the Windows Registry and file system.
o Residual data in volatile memory (RAM).

o Network communication patterns (C2 traffic).

3.1 Dataset creation

To construct a dataset suitable for training machine learning models, it is best to establish a
controlled generation pipeline focused on producing realistic forensic artifacts. The input to
this phase is a clean, instrumented virtual environment, while the output consists of raw
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forensic disk images and memory dumps containing both benign and malicious activity
patterns.

The data generation process was designed to simulate the complete lifecycle of a cyberattack
and was executed through the following methodological steps:

e orchestration of multi-stage attack scenarios,

e injection of advanced evasion techniques,

e temporal annotation (ground truth generation), and

e forensic data acquisition.

Orchestration of Multi-Stage Attack Scenarios: The core of the dataset was generated by
executing advanced attack scenarios that mimic the Tactics, Techniques, and Procedures
(TTPs) of sophisticated threat actors. The simulation followed a linear kill-chain progression,
moving from initial access (e.g., payload delivery via downloaders) to execution, persistence
establishment, privilege escalation, and credential access. This structured approach ensures
that the dataset captures the sequential dependencies and causal relationships between
different forensic artifacts.

Injection of Advanced Evasion Techniques: To reflect the complexity of modern threats, the
simulation included techniques specifically designed to minimize forensic footprint and bypass
static detection. This included the use of "Living off the Land" (LotL) binaries, fileless execution
methods (e.g., reflective DLL injection, in-memory .NET assembly loading), and obfuscation of
command-line arguments. These techniques ensure that the resulting dataset challenges the
detection capabilities of the model beyond simple signature matching.

Temporal Annotation (Ground Truth Generation): Crucial to the supervised learning pipeline,
precise timestamps were recorded for every distinct phase of the attack simulation. These
time windows constitute the "ground truth," defining the exact periods during which
malicious artifacts were introduced to the system. These annotations are subsequently used
in the data processing pipeline to label the supertimeline segments, allowing for the
calculation of precision and recall metrics during model evaluation.

Forensic Data Acquisition: Upon completion of the simulation scenarios, the state of the
virtual environment was frozen, and a full forensic acquisition was performed. This process
yielded a raw bitstream image of the non-volatile storage (disk image). These raw data sources
serve as the primary input for the forensic extraction framework (e.g., Athena), linking the
physical simulation phase to the logical data processing phase described in the subsequent
section.

3.2 Attack techniques used in the creation of the dataset

The base layer of network and system activity was generated using the Cymulate platform,
which was used to create a realistic background and simulate standard intersection vectors.
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Within the Cymulate instrument, an advanced scenario was carried out, simulating the
activities of the APT-19 group.

3.2.1 APT-19 attack preparation stages

The advanced APT-19 scenario begins with service-level execution: an attacker installs and
runs a PowerShell-based service, prepares a payload using Invoke-WebRequest, and runs
Base64-encoded PowerShell code for stealth.

e Downloader: Invoke-WebRequest (PowerShell)
This attack simulation downloads a file from a specified URL to a specific path on your
computer using the Invoke-WebRequest cmdlet in PowerShell. This cmdlet allows the
user to retrieve the contents of a web page or file from a web server and can be used
to download the file from a remote server to a local machine.

e Execute Base64-Encoded PowerShell Command
This attack simulation creates malicious PowerShell code that is encoded with Base64.
This type of attack is commonly used by attackers to gain access to the system. Once
successfully executed, the PowerShell code executes an encoded command that
outputs the message "Hey, Atomic!" to standard output.

e Executing a Command as a Service
This attack simulation creates a service that allows any command to be executed.
When you try to run a command such as PowerShell, the service will report a failed
completion, even if the code is executed correctly. If the command is successful, the
sc.exe create command creates a new service and Powershell.exe creates a new file
named art-marker.txt.

e Process Injection: Reflective DLL Injection
Reflective DLL injection is a method of attacking a system by injecting malicious code
into a running process. This technique allows an attacker to inject a dynamic library
(DLL) into the target process without the need to first write the DLL to disk. Instead,
the DLLis loaded directly from memory, bypassing the traditional security mechanisms
that may be deployed. Once a malicious DLL has been inserted, it can be used to
execute malicious code or gain access to sensitive information.

e Service Installation Using PowerShell
This attack simulation installs an on-premises service using PowerShell. Once
successfully launched, PowerShell will download the AtomicService.exe from Github.
It then uses the New-Service and Start-Service commands to start the service.

¢ Hidden Window
This simulation of the attack triggers a hidden PowerShell window that executes the
executable file without the user's knowledge. This is accomplished by passing the -
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WindowStyle Hidden argument to the PowerShell command, setting the WindowStyle
parameter to hidden. This effectively hides the PowerShell window and its associated
processes from the user's view.

Modifying SecurityHealth Registry with CMD

This attack simulation involves modifying the RUN key in the Local Machine registry to
change the Windows Defender executable to run at system startup. This can only be
done when Command Prompt (CMD) is run with administrator privileges.

Registry Modification: Hide File Extensions

This command sets a registry entry under
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Adva
nced, which instructs Windows Explorer to hide the extensions of all files.

Registry Run Keys: Persistence

This attack simulation creates new registry keys in sites that are commonly used to
maintain persistence (persistent presence), such as the Windows registry. The values
of these keys are then set to refer to the payload that the attacker wants to run. This
allows the payload to remain permanently present in the system even after the system
is restarted.

Hijack Execution Flow: Path Interception (PATH)

This attack simulation test downloads a malicious binary to the specified path. It then
sets the PATH environment variable to redirect the alias (net.exe) to the path to the
malicious binary. This will set the new path with a higher priority than any other paths
in the PATH value. When the net command is used, a malicious binary is executed
instead of the original binary. The default binary should output the string "This is a test
binary by Cymulate".

LOLBIN Download - Remote execution with ADS

The command-line interpreter in Windows adds content to an alternate data stream
(ADS). Example of a harmful use case: It can be used to bypass defensive
countermeasures or to hide as a persistence mechanism.

3.2.2 APT-19 attack execution stages

Specific execution sequences focused on persistence, privilege escalation, and identity theft
(credential access/theft) were then manually injected into this environment. The attack
scenario took place in the following stages:

1. Persistence: SharPersist (a C# toolkit for persistence in Windows) was used to maintain

persistent access, which in this case was run from C:\Windows\Tasks\SharPersist.exe.
With this tool, persistence mechanisms were created using Scheduled Tasks, services,
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and registry keys. The created persistence ensured the presence of a backdoor, located
in C:\Windows\Tasks\mssvc\mssvc.exe.

Environment enumeration and privilege escalation: After ensuring persistent access,
a vulnerability investigation of the system was conducted. Two complementary
instruments have been used for this purpose:

e SharpUp (C:\Windows\Tasks\SharpUp.exe): A C# implementation designed to
quickly identify configuration errors (e.g., modifiable services) that allow escalation
to the administrator level.

e WInPEAS.psl (C:\Windows\Tasks\winPEAS.ps1): A complex PowerShell script that
performed an in-depth analysis of the system. This tool generates a significant
number of artifacts (reading files, accessing registers), creating a specific "noisy"
pattern in the dataset.

Both tools perform an extensive set of checks (e.g., service configurations, access
rights, registers, file system) in normal use, which typically translates into an increased
number of system queries and a "noisier" profile in the logs compared to minimalist
manual enumeration.

Credential Access: SafetyKatz and SharpKatz were used to extract authentication
material (NTLM and Kerberos keys/tickets) from the LSASS process.

e C:\Windows\Tasks\SafetyKatz.exe — A C# tool from the GhostPack suite that acts
as a wrapper around the well-known Mimikatz hacking tool. SafetyKatz creates a
minidump of the LSASS process's memory using the MiniDumpWriteDump
function to C:\Windows\Temp\debug.bin. It then loads the modified Mimikatz via
PELoader, executes sekurlsa::logonpasswords and sekurlsa::ekeys over the dump,
and deletes the file when finished.

e C:\Windows\Tasks\SharpKatz.exe — C# port of the selected Mimikatz commands.

Defence Evasion: The SharpKiller tool (port "AMSI-Killer" to .NET) was used to bypass
AMSI (AntiMalware Scan Interface) by patching the in-memory check so that AMSI
does not block malicious content.

e C:\Windows\Tasks\SharpKiller.exe

10
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3.3 Threat Landscape

The created dataset is relevant to current research in the field of cybersecurity, as it reflects a
shift in the paradigm of attacks from traditional executables to techniques referred to as
"Living off the Land" (LotL) and ".NET Tradecraft".

3.3.1 Detection of "Fileless" and .NET threats

Traditional antivirus systems have long focused on file signatures on disk. The tools used in
our dataset (SharpUp, SharpKatz, SharPersist) are often loaded directly into memory via the
Reflective DLL Injection or Assembly Loading technique, minimizing the footprint on the disk.
For ML models, this presents a challenge to identify anomalies in process behaviour and API
calls, rather than relying on static file attributes. The dataset provides training data for
detecting malicious code running in the context of a legitimate common language runtime
(CLR).

3.3.2 Abuse of Trusted Paths and Camouflage

The placement of tools in the C:\Windows\Tasks directory is not accidental. This directory is
often browsed by administrators because it contains a lot of legitimate system files, and at the
same time, ordinary users also have write privilege to it in certain configurations. Combining
this site with names like mssvc.exe simulates the sophisticated cloaking that is typical of
Advanced Persistent Threat (APT) groups. An ML model trained on this data must learn to
distinguish between a legitimate process and its spoofed counterpart based on contextual
metadata (parental process, start time, absence of digital signature), not just by name.

3.3.3 Bypass of modern protectors

The inclusion of the AMSI bypass (Sharp-Killer) technique in the dataset is essential for
simulating a sophisticated adversary. If the ML model cannot detect the telemetry disabling
act (AMSI) itself, it becomes blind to the subsequent phases of the attack. This dataset allows
you to train models to detect so-called "pre-exploit" activities, where an attacker manipulates
the integrity of the monitoring system itself.

3.3.4 Practical applicability

The techniques described are currently actively used not only by state-sponsored actors, but
also by Ransomware-as-a-Service operators (e.g., Conti groups, LockBit), who use tools such
as SharpUp and Mimikatz variants to move laterally in the network before the data is
encrypted. Research based on this dataset therefore has a direct impact on improving
detection capabilities against the most widespread cyber threats today.
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4 Method for forensic dataset creation from CTF

This chapter presents possible data sources and methodologies for creating datasets for digital
forensic analysis. The chapter describes what types of sources—including CTF competitions,
reference dataset portals, and synthetic security datasets—are suitable for obtaining relevant
artifacts. It also discusses two approaches to dataset creation: using forensic tools and
creating a dataset using embedded data.

4.1 Possible sources of data

As mentioned above, CTF competitions are a suitable source for creating datasets for digital
forensic analysis, as access to real data from security incidents can be problematic and limited.
Data from real security incidents is often not publicly available and obtaining it can be difficult
due to the need for authorisation, legal restrictions, or personal data protection.

For the purpose of creating datasets, combined sources are therefore used to simulate or
directly access relevant artifacts and scenarios. The following data sources are practical and
proven options that are commonly used in digital forensic analysis research and teaching:

CTF and training datasets

o DFIR CTFs Archive — a collection of various CTF tasks and datasets for DFIR training
(disk images, artifacts) — clearly available through portals such as DFIR Training / DFIR
CTF archives [6].

o Digital Corpora — freely available collection of disk images, scenarios, and artifacts,
including various CTF scenarios and M57 Patents scenario (disk images, memory,
PCAPs) [7].

¢ Honeynet Project Forensic Challenges — competitions and forensic challenges
(challenges and dataset packages for practicing forensic techniques) [8].

Reference dataset portals and projects
o EVIDENCE Project — a European project focused on the exchange and standardization
of digital evidence in practice; background and framework materials for working with
real evidence (access to data may be limited) [9].

4.2 Dataset creation using forensic tools

A dataset for research in the field of digital forensic analysis can be created directly using
specialized forensic tools. Data extracted from disk images of individual CTF scenarios can be
processed using the Kroll Artifact Parser and Extractor (KAPE) tool [10]. KAPE is one of the
widely used tools in the field of digital forensic analysis and enables systematic, repeatable,
and automated extraction and parsing of forensic artifacts from the Windows operating
system. Thanks to the support of modular profiles (Targets and Modules), it is possible to
precisely define which artifacts are to be retrieved from the system and how they are to be
processed into a structured form suitable for further analysis.
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In addition to the KAPE tool, separate forensic tools from the Eric Zimmerman Tools [11] set
can also be used to create a dataset. These tools are often used in practice either directly or
as parsing modules integrated into KAPE. These tools enable detailed analysis of specific types
of forensic artifacts and generate outputs most often in the form of CSV files, which are
suitable for subsequent processing using data analysis and machine learning methods.

The process of creating a dataset using forensic tools involves several systematic steps that
ensure the extraction, parsing, and evaluation of forensic data. Each step is designed to
preserve the integrity of the original data and to ensure that the resulting dataset contains
analytically relevant information suitable for further digital forensic analysis and experiments
with data analysis or machine learning.

The following steps were applied to create the dataset:
1) mounting the disk image,
2) extracting forensic artifacts using forensic tools (e.g., KAPE),
3) parsing forensic artifacts,
4) cleaning and preparing output data,
5) automated and manual enrichment of output data (silver and gold labeling)

In the following subchapters, we provide more detailed comments on each section.

4.2.1 Mounting the disk image

The data processing consisted of several steps. In the first step, the disk image was mounted
in read-only mode using disk image mounting tools (e.g., Arsenal Image Mounter [12]). This
approach ensures the integrity of the original data and eliminates the risk of unintentional
modification during analysis, which is a key principle of digital forensic methodology.

4.2.2 Extraction of forensic artifacts using forensic tools

After successfully mounting the disk image, the KAPE tool is launched on the mounted file
system. During the extraction phase, it is possible to use built-in "targets" that allow for the
targeted extraction of relevant forensic artifacts. Specifically, it is advisable to use targets for
the following artifacts:

e SMFT (Master File Table),

e SJ(USN Journal),

e SRUM (System Resource Usage Monitor),

e Registry hives,

e Amcache,

e LNKfiles and Jump Lists,

e Prefetch files,

e Windows Event Logs,

¢ Recycle Bin, and

|
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e Windows Timeline.

These artifacts are essential sources of information about user activity, application launches,
file operations, and system events, and are therefore crucial for incident reconstruction and
analysis of potentially malicious activity. More information about forensic artifacts on the
Windows operating system can be found in deliverable - D12 Method for automated collection
of digital evidence.

4.2.3 Parsing forensic artifacts

The following KAPE tool modules and relevant tools from Eric Zimmerman can be used for the
above-mentioned forensic artifacts:

e AmcacheParser.mkape — using the AmcacheParser tool [13].

e AppCompatCacheParser.mkape — use of the AppCompatCacheParser tool [14].
e EvtxECmd.mkape — use of the EvtxECmd tool [15].

e JLECmd.mkape — using the JLECmd tool [16].

e LECmd.mkape — using the LECmd tool [17].

e MFTECmd.mkape — using the MFTECmd tool [18].

e PECmd.mkape — using the PECmd tool [19].

e RBCmd.mkape — using the RBCmd tool [20].

e RECmd_AlIBatchFiles.mkape — using the RECmd tool (processing all batch files) [21].
e SBECmd.mkape — using the SBECmd tool [22].

e WxTCmd.mkape — using the WxTCmd tool [23].

e SrumECmd.mkape — using the SrumECmd tool [24].

These parsers transform raw forensic artifacts into a structured form, resulting in CSV files
that represent individual artifact types and their attributes.

4.2.4 Cleaning and preparing output data

The output files are CSV files containing selected forensic artifacts, whose structure and
number may vary depending on:

e the version of the Windows operating system,

e system settings,

¢ the number of user accounts (more users lead to more output files),

¢ the availability of specific mechanisms (e.g., SRUM is not present in all OS versions).

Console logs, which are generated by the KAPE tool during runtime by default, should be
removed from the outputs as they do not represent analytically relevant data for the purposes
of creating a dataset. It is also advisable to exclude the PECmd parser output in the form of a
timeline, as the standard CSV output of this tool contains more detailed and analytically
valuable information.
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4.2.5 Automated and manual enrichment of output data

The extraction and parsing of forensic artifacts is followed by a phase of enriching the output
data, which is based on identifying the time windows during which malicious activity took
place. The time windows for individual datasets are determined primarily on the basis of
publicly available descriptions of CTF scenarios (CTF write-ups), which specify the course and
time frame of the incident, or on the basis of manual forensic analysis of specific CTF cases.

All outputs from Eric Zimmerman Tools are then automatically analyzed. As part of this
analysis, attributes containing timestamps (so-called silver labeling) are identified in each CSV
file. Based on their comparison with the defined incident time window, each row of data is
evaluated as follows:
e value 1if at least one timestamp in the row falls within the identified security incident
time window,
e value 0if no timestamp in the row belongs to this time window.

When evaluating individual datasets, other important time milestones known from CTF
scenarios are also taken into account. Typically, these include the time of operating system
installation, the start and end of the incident (incident timeframes), and the time of system
seizure or digital evidence collection. Information about the installation of the system is used
to trim the data, as records prior to this time should not be present in the system and their
timestamps are highly likely to have been modified. From the time of system installation until
the start of the incident, records are evaluated as 0, during the incident as 1, and after its end
until the time of securing again as 0. Records after the system was secured are removed from
the dataset again, as no new legitimate artifacts should be added to the system after this point
and their timestamps would inevitably be changed.

Examples of timeframes for some CTF case studies are shown in Tab. 1.

Case Install OS Incident timeframes Co.llectlon of
evidence
NIST Data 2015-03-23 13:29 - 2015-03-23 16:43,
Leakage 2015-03-22 | 2015-03-24 09:26 - 2015-03-24 17:06, 2015-04-23
Case 14:34:26 2015-03-25 10:46 - 2015-03-25 11:30 10:58:22
$SS - DC 2020-09-17 | 2020-09-19 02:19 - 2020-09-19 02:35 2020-09-19
16:43:59 04:51:27
SSS - 2020-09-18 2020-09-18
Desktop 05:47:03 2020-09-19 02:35 - 2020-09-19 08:52 99:18:11
Magnet CTF | 2018-07-28 | 2019-03-18 18:35:00 - 2019-03-18 2019-03-20
2019 07:27:53 19:08:57 21:29:33
Magnet CTF | 2020-02-14 2020-04-22
2020 02:10:21 21:55:30
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Magnet CTF | 2022-02-04 | 2022-02-10 18:23 -2022-02-12 02:20 2022-02-13

2022 07:05:47 15:52:20

Table 1 — Time frames for selected CTFs

Exceptions to this procedure are outputs that do not contain any time attributes (e.g., some
CSV files extracted from Windows registries). In these cases, it is not possible to determine
the relationship of the record to the incident based on time, and therefore these records are
assigned a value of N/A (not applicable).

In addition to automated time evaluation, it is advisable to supplement the dataset with
manual labeling (so-called gold labeling). In the case of CTF scenarios, a detailed manual
forensic analysis is performed, based on which records that are directly related to a security
incident with a high degree of certainty are marked with a value of 1. Other records are not
clearly evaluated, as it is not possible to assign a value of O (clearly unrelated to the security
incident) to some of them, while others need to be labeled "unknown" because it was not
possible to determine with certainty their relationship to the security incident.

This means that records can be rated in several ways: either automatically based on their
classification within the time frame of the incident (silver labeling) or manually based on an
assessment of whether a specific record from the forensic output is relevant or irrelevant to
the security incident in question (gold labeling).

4.3 Creating an embedding dataset

At the input of the embedding-based dataset construction pipeline, we use the output of the
Plaso forensic framework [25], specifically the supertimeline, which represents a
chronologically ordered aggregation of forensic artifacts extracted from the disk image. The
supertimeline integrates events from multiple sources (e.g., file system metadata, registry
entries, event logs, browser artifacts), providing a unified temporal view of system activity.

To make this raw forensic timeline suitable for machine learning—based analysis, a multi-stage
transformation process was applied, consisting of the following steps:

1) marking data according to the incident time windows listed in the table (ADD),

2) trimming the system installation and image backup time,

3) creating a delta for every two records,

4) column selection,

5) combining selected columns into a text field,

6) filtering the scaler on all deltas,

7) training the tokenizer on all texts,

8) dividing into windows,

9) creating embeddings from text in windows, and

10) returning embeddings, deltas, labels as triples.
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4.3.1 Marking data according to incident time windows (ADD)

Each supertimeline record was annotated based on predefined incident time windows, which
were derived from prior knowledge of attack execution times (ground truth). These time
windows represent periods during which malicious activity is known to have occurred. Records
falling within these windows were labeled accordingly, enabling supervised or semi-
supervised learning. This step establishes a direct temporal linkage between forensic artifacts
and attack phases.

4.3.2 Trimming system installation and image backup artifacts

To reduce noise and prevent bias in the dataset, we removed timeline segments
corresponding to operating system installation, initial configuration, and forensic image
acquisition or backup activities. These phases typically generate dense but non-relevant
forensic artifacts that can dominate the timeline and distort temporal patterns unrelated to
attacker behavior.

4.3.3 Delta computation with logarithmic scaling

For each pair of consecutive records in the supertimeline, we computed a temporal delta,
defined as the difference between their timestamps. This delta captures the temporal
dynamics of system activity rather than absolute time values.

To mitigate the effect of extreme timestamp gaps (e.g., system inactivity, shutdown periods),
the deltas were transformed using logarithmic scaling, which stabilizes variance and improves
robustness for downstream ML models.

4.3.4 Feature (column) selection

From each Plaso record, we selected a subset of semantically meaningful attributes commonly
used in forensic interpretation:

e user —the user context associated with the event

e host —the system or hostname

e desc—human-readable description of the artifact

e MACB —file activity semantics (Modified, Accessed, Changed, Birth)

e sourcetype — origin of the artifact (e.g., NTFS, Registry, EVTX)

e type — artifact or event type

This selection balances contextual richness with dimensionality reduction.
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4.3.5 Textual fusion of selected attributes

The selected columns were concatenated into a single textual representation per timeline
record. This transformation converts heterogeneous forensic metadata into a unified text
format, making it compatible with natural language processing (NLP)-based embedding
models.

At this stage, records originating from all disk images and experiments were merged into a
single consolidated dataset, ensuring consistent tokenization and embedding space across all
samples.

4.3.6 Fitting the delta scaler

A global scaler was fitted on all computed delta values across the entire dataset. This scaler
was later applied uniformly during model training and evaluation, ensuring consistent
normalization of temporal features across different samples and scenarios.

4.3.7 Training the tokenizer on forensic text

A tokenizer was trained on the complete corpus of forensic text representations. Training the
tokenizer on domain-specific forensic language (e.g., registry paths, executable names, event
descriptions) allows the embedding model to better capture the semantics of digital forensic
artifacts compared to generic tokenizers.

4.3.8 Windowing of the supertimeline

The continuous supertimeline was segmented into fixed-length windows, each representing
a short temporal context of system activity. Windowing enables the model to learn local
behavioral patterns and temporal correlations between events, rather than treating each
record in isolation.

Each window can be interpreted as a micro-sequence of forensic activity corresponding to a
potential attack phase or benign system operation.

4.3.9 Embedding generation from windowed text

For each window, embeddings were generated from the aggregated textual content using the
trained tokenizer and embedding model. These embeddings encode the semantic and
contextual information of forensic events into dense vector representations suitable for
downstream ML tasks such as classification, clustering, or anomaly detection.
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4.3.10 Output construction

The final dataset consists of triples:
o Embeddings representing semantic event context,
¢ Temporal deltas capturing timing dynamics,
o Labels derived from incident window annotations.

This structured output enables hybrid modeling approaches that jointly exploit semantic,
temporal, and supervisory information, providing a robust foundation for advanced forensic
analysis and attack detection experiments
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