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1 Project description 
 
The project Automatization of digital forensics and incident response (hereinafter referred 
to as “ADFIR”) is funded by the European Union – Next GenerationEU through the Recovery 
and Resilience Plan of the Slovak Republic under project No. č. 09-I05-03-V02-00079. This 
project addresses one of the key challenges in cybersecurity and information security – how 
to process the massive volume of digital evidence generated during cybersecurity incidents or 
forensic investigations. Currently, this process is highly demanding in terms of human 
resources and time. Therefore, automation using machine learning methods can significantly 
improve the quality of digital forensic analysis and reduce the time required to perform it. 
Overall, this enables security teams to respond more effectively to cyber threats. Main 
benefits of this project are: 

• Accelerated Resolution of Cybersecurity Incidents. The project ADFIR introduces 
automated approaches to collecting, processing, and analyzing digital traces. As a 
result, security teams can identify the causes of incidents more quickly and adopt 
effective measures to address them.  

• Reduced Workload for Forensic Analysts. Routine and time-consuming tasks involved 
in processing digital traces will be replaced by automated methods. This will allow 
analysts to focus on more complex cases and strategic decision-making.  

• Higher Quality and Consistency of Outputs. The use of unified methodologies and 
tools ensures that the processed digital traces will be more accurate, consistent, and 
easily verifiable. This significantly reduces the risk of errors caused by human factors.  

• Potential Use in Criminal Proceedings. The project outputs will be developed in 
compliance with legal requirements and standards, allowing the digital traces to be 
accepted as relevant evidence for investigations and court proceedings. 
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2 Introduction 

The development of machine learning methods and advanced data analysis also has a 
significant impact on the field of digital forensic analysis. However, automated processing of 
large amounts of forensic data, identification of behavior patterns, correlation of events, and 
detection of anomalies require high-quality, well-structured, and representative data sets. 
The way in which these datasets are created has a fundamental impact on the usability and 
reliability of the resulting models. 
 
The development of machine learning methods and advanced data analysis is also having a 
significant impact on the field of digital forensic analysis. However, automated processing of 
large amounts of forensic data, identification of behavior patterns, correlation of events, and 
anomaly detection require high-quality, well-structured, and representative data sets. The 
way these data sets are created has a fundamental impact on the usability and reliability of 
the resulting models. 
 
One of the main challenges in the field of digital forensic analysis is the lack of high-quality 
datasets that meet several key requirements, such as the availability of comprehensive case 
studies and a sufficient number of relevant digital artifacts [1,2]. This problem is highlighted 
in several scientific publications, which emphasize the need for well-structured datasets 
suitable for forensic purposes and at the same time point out the overall lack of such 
resources in this area [1,2,3]. 
 
From the perspective of model learning and the application of machine learning in digital 
forensic analysis, three basic types of datasets can be identified: 

1. Real datasets obtained directly from the resolution of actual security incidents, 
2. Created datasets from simulated attacks and attacker techniques, carried out in a 

controlled environment, 
3. Datasets originating from CTF (Capture The Flag) competitions, in which attacks are 

simulated and analytical tasks and questions are subsequently prepared. 
 
Each of these approaches has its advantages, limitations, and specifics that must be taken into 
account when designing the research methodology and interpreting the results. 
 

2.1 Real datasets from actual security incidents 

Real data from actual security incidents are the most valuable source for digital forensic 
analysis in terms of authenticity and realism. They capture the actual behavior of attackers, 
real system configuration errors, unforeseen combinations of events, and the complex 
dynamics of incidents in a production environment. For this reason, they provide an ideal basis 
for the development and testing of forensic analysis methods. 
 
However, the use of such data presents significant problems and limitations. Real-world 
datasets often cover only a limited range of attacker techniques, tactics, and procedures 
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(TTPs) that occurred in a given security incident. They are therefore not a representative cross-
section of the entire spectrum of possible attacks, but rather a specific and context-bound 
case. In addition, real-world security incidents often vary in the quality and completeness of 
available artifacts, as data may be corrupted, deleted, or incomplete. 
 
However, the biggest obstacle is the practical impossibility of sharing this data. This data is 
sensitive in nature and may contain personal data and other sensitive information (e.g., 
intellectual property, trade secrets), and its use is restricted by legislative frameworks, 
personal data protection, trade secrets, and internal security policies of organizations. For this 
reason, its use for academic research and development, replicability of experiments, and 
comparability of results is significantly limited. This is also confirmed in article [4], where the 
authors point out in their findings that when creating a dataset, it is important to ensure that 
the datasets are not only created correctly, but also reflect scenarios that may occur in real-
life situations. They also emphasize that creating and sharing datasets can be challenging due 
to legal restrictions or data management and protection. The same is stated by Breitinger and 
Jotterand [3], who concluded that creating and sharing datasets is essential for progress and 
for enabling the comparison of results. They also emphasized the need to be cautious with 
regard to specific laws, such as copyright or licensing. 
 

2.2 Datasets from simulated attacks and attacker techniques 

The second approach to dataset creation is targeted simulation of attacks and attacker 
techniques in a controlled and isolated environment. In this case, attacks are carried out 
consciously and systematically. Attacks are often carried out based on known frameworks, 
such as MITRE ATT&CK, with the aim of generating forensic artifacts corresponding to specific 
techniques and phases of the attack. 
 
The main advantage of this approach is control over the scenario. The researcher or developer 
knows exactly which techniques were used, in what order, and for what purpose. This allows 
for accurate data labeling, the creation of balanced datasets, and systematic testing of models' 
ability to detect specific types of behavior. Simulated datasets are also suitable for creating 
reference data for experimental comparisons and validation studies. 
 
On the other hand, simulated attacks also have their limitations. Even with a high level of 
expertise, the simulation may be simplified and may not capture all the unpredictable aspects 
of real incidents, such as attacker errors, combined attacks by multiple actors, or long-term 
low-intensity campaigns. Nevertheless, simulated attacks represent an important 
compromise between realism and data controllability. 
 

2.3 Datasets from CTF competitions 

The third category consists of datasets from CTF (Capture the Flag) competitions, which have 
long been used in cybersecurity education and training. CTF tasks are typically designed to 
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simulate a specific security incident or part of it, and participants answer predefined questions 
by analyzing digital traces. 
 
The use of CTF datasets has certain inherent limitations. CTF scenarios are often artificially 
created, focused on a specific type of attack, and usually carried out by a single attacker. Such 
a model may not fully reflect reality, where multiple attackers may be involved, multi-stage 
attacks may take place, and the outcome of the investigation is not known in advance. 
Furthermore, CTF data implicitly assumes the existence of a solution, while real-world security 
incidents are characterized by a high degree of uncertainty and ambiguity. 
 
Despite these limitations, CTF competitions have significant parallels with real-world security 
incidents. Even in CTF scenarios, attackers use specialized tools, techniques, and tactics that 
are often identical or very similar to those used in practice. The process of examining data and 
digital traces, correlating artifacts, and reconstructing events is comparable to real-world 
digital forensic analysis. 
 
Although the digital traces in CTF tasks are artificially created, the process of data analysis 
and forensic artifact extraction itself is largely the same as in the investigation of real 
incidents. Furthermore, the structured nature of CTF tasks, often based on questions and 
answers, can promote a systematic analytical approach that is transferable to the real world 
and can lead to faster problem identification and resolution. 
 

2.4 Motivation for the selection of data sources 

In view of the above, we decided to focus this study primarily on datasets created from 
simulated attacker techniques and datasets originating from CTF competitions. 
The main reason is the limited availability of data from real security incidents and the practical 
impossibility of sharing it in an academic and research environment. 
 
The focus on Windows operating system disk images is based on the scope and complexity 
of digital forensic analysis as a discipline. Individual subdomains, such as network forensic 
analysis, forensic analysis of Windows, Linux, or mobile devices, differ significantly in data 
structure, tools used, and analytical procedures. Each of these areas requires specific methods 
of data preprocessing and analysis, which makes a universal approach impossible. 
 
By using simulated attacks and CTF datasets in a Windows environment, it is possible to create 
reproducible, shareable, and methodologically controllable datasets that provide a suitable 
basis for research and development of machine learning methods in digital forensic analysis. 
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3 Method for forensic dataset creation based on attackers' 
techniques  

For the purpose of training and validating machine learning (ML) models designed to 
automate forensic analysis, a dataset was created that faithfully reflects the behaviour of 
modern attackers in the post-exploitation phase. Unlike synthetic datasets generated 
randomly, in the ADFIR project we used a combination of automated simulation and manual 
execution of advanced offensive TTPs (Tactics, Techniques, and Procedures - TTPs). 
 
The data collection was conducted on a virtualized workstation designated as RD05W-W11-1, 
operating on Windows 11 (version 23H2) and hosting the Cymulate agent for testing purposes. 
The underlying infrastructure utilizes the VMware ESXi hypervisor. The testing environment 
simulates a standard corporate domain structure, where the endpoint is managed by two 
redundant domain controllers running Windows Server 2022 Standard. 
 
To generate synthetic yet realistic attack simulation, the Cymulate platform [5] was utilized 
within the experimental environment. Cymulate is a Breach and Attack Simulation (BAS) tool 
designed to continuously validate cyber resilience through automated attack simulations. 
 
Unlike traditional penetration testing, Cymulate allows for the execution of comprehensive 
attack scenarios in a controlled environment without disrupting production operations. 
Crucially for this research, the platform generates high-fidelity digital footprints at both the 
operating system and network levels. 
 
For the purposes of the research, the following features of the platform were essential: 
 

• MITRE ATT&CK® Alignment: Cymulate simulates the Tactics, Techniques, and 
Procedures (TTPs) of real-world adversaries mapped to the MITRE ATT&CK framework. 
This ensures that the generated data reflects current trends in cyber threats (e.g., APT 
groups, ransomware, and advanced trojans). 

• Generation of Forensic Artifacts: Although the attacks are simulated, the interaction 
with the operating system is authentic. The execution of these simulations leaves 
specific traces necessary for training the forensic automation tool, including: 

o Entries in system logs (Windows Event Logs). 
o Modifications to the Windows Registry and file system. 
o Residual data in volatile memory (RAM). 
o Network communication patterns (C2 traffic). 

 

3.1 Dataset creation 

To construct a dataset suitable for training machine learning models, it is best to establish a 
controlled generation pipeline focused on producing realistic forensic artifacts. The input to 
this phase is a clean, instrumented virtual environment, while the output consists of raw 



 

 
 
  7 

 

forensic disk images and memory dumps containing both benign and malicious activity 
patterns. 
 
The data generation process was designed to simulate the complete lifecycle of a cyberattack 
and was executed through the following methodological steps: 

• orchestration of multi-stage attack scenarios, 

• injection of advanced evasion techniques, 

• temporal annotation (ground truth generation), and 

• forensic data acquisition. 
 

Orchestration of Multi-Stage Attack Scenarios: The core of the dataset was generated by 
executing advanced attack scenarios that mimic the Tactics, Techniques, and Procedures 
(TTPs) of sophisticated threat actors. The simulation followed a linear kill-chain progression, 
moving from initial access (e.g., payload delivery via downloaders) to execution, persistence 
establishment, privilege escalation, and credential access. This structured approach ensures 
that the dataset captures the sequential dependencies and causal relationships between 
different forensic artifacts. 
 
Injection of Advanced Evasion Techniques: To reflect the complexity of modern threats, the 
simulation included techniques specifically designed to minimize forensic footprint and bypass 
static detection. This included the use of "Living off the Land" (LotL) binaries, fileless execution 
methods (e.g., reflective DLL injection, in-memory .NET assembly loading), and obfuscation of 
command-line arguments. These techniques ensure that the resulting dataset challenges the 
detection capabilities of the model beyond simple signature matching. 
 
Temporal Annotation (Ground Truth Generation): Crucial to the supervised learning pipeline, 
precise timestamps were recorded for every distinct phase of the attack simulation. These 
time windows constitute the "ground truth," defining the exact periods during which 
malicious artifacts were introduced to the system. These annotations are subsequently used 
in the data processing pipeline to label the supertimeline segments, allowing for the 
calculation of precision and recall metrics during model evaluation. 
 
Forensic Data Acquisition: Upon completion of the simulation scenarios, the state of the 
virtual environment was frozen, and a full forensic acquisition was performed. This process 
yielded a raw bitstream image of the non-volatile storage (disk image). These raw data sources 
serve as the primary input for the forensic extraction framework (e.g., Athena), linking the 
physical simulation phase to the logical data processing phase described in the subsequent 
section. 
 

3.2 Attack techniques used in the creation of the dataset 

The base layer of network and system activity was generated using the Cymulate platform, 
which was used to create a realistic background and simulate standard intersection vectors.  
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Within the Cymulate instrument, an advanced scenario was carried out, simulating the 
activities of the APT-19 group. 
 

3.2.1 APT-19 attack preparation stages 

The advanced APT-19 scenario begins with service-level execution: an attacker installs and 
runs a PowerShell-based service, prepares a payload using Invoke-WebRequest, and runs 
Base64-encoded PowerShell code for stealth. 
 

• Downloader: Invoke-WebRequest (PowerShell) 
This attack simulation downloads a file from a specified URL to a specific path on your 
computer using the Invoke-WebRequest cmdlet in PowerShell. This cmdlet allows the 
user to retrieve the contents of a web page or file from a web server and can be used 
to download the file from a remote server to a local machine. 
 

• Execute Base64-Encoded PowerShell Command 
This attack simulation creates malicious PowerShell code that is encoded with Base64. 
This type of attack is commonly used by attackers to gain access to the system. Once 
successfully executed, the PowerShell code executes an encoded command that 
outputs the message "Hey, Atomic!" to standard output. 
 

• Executing a Command as a Service 
This attack simulation creates a service that allows any command to be executed. 
When you try to run a command such as PowerShell, the service will report a failed 
completion, even if the code is executed correctly. If the command is successful, the 
sc.exe create command creates a new service and Powershell.exe creates a new file 
named art-marker.txt. 
 

• Process Injection: Reflective DLL Injection 
Reflective DLL injection is a method of attacking a system by injecting malicious code 
into a running process. This technique allows an attacker to inject a dynamic library 
(DLL) into the target process without the need to first write the DLL to disk. Instead, 
the DLL is loaded directly from memory, bypassing the traditional security mechanisms 
that may be deployed. Once a malicious DLL has been inserted, it can be used to 
execute malicious code or gain access to sensitive information. 
 

• Service Installation Using PowerShell 
This attack simulation installs an on-premises service using PowerShell. Once 
successfully launched, PowerShell will download the AtomicService.exe from Github. 
It then uses the New-Service and Start-Service commands to start the service.  
 

• Hidden Window 
This simulation of the attack triggers a hidden PowerShell window that executes the 
executable file without the user's knowledge. This is accomplished by passing the -
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WindowStyle Hidden argument to the PowerShell command, setting the WindowStyle 
parameter to hidden. This effectively hides the PowerShell window and its associated 
processes from the user's view. 
 

• Modifying SecurityHealth Registry with CMD 
This attack simulation involves modifying the RUN key in the Local Machine registry to 
change the Windows Defender executable to run at system startup. This can only be 
done when Command Prompt (CMD) is run with administrator privileges. 
 

• Registry Modification: Hide File Extensions 
This command sets a registry entry under 
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Adva
nced, which instructs Windows Explorer to hide the extensions of all files. 
 

• Registry Run Keys: Persistence 
This attack simulation creates new registry keys in sites that are commonly used to 
maintain persistence (persistent presence), such as the Windows registry. The values 
of these keys are then set to refer to the payload that the attacker wants to run. This 
allows the payload to remain permanently present in the system even after the system 
is restarted. 
 

• Hijack Execution Flow: Path Interception (PATH) 
This attack simulation test downloads a malicious binary to the specified path. It then 
sets the PATH environment variable to redirect the alias (net.exe) to the path to the 
malicious binary. This will set the new path with a higher priority than any other paths 
in the PATH value. When the net command is used, a malicious binary is executed 
instead of the original binary. The default binary should output the string "This is a test 
binary by Cymulate". 
 

• LOLBIN Download - Remote execution with ADS 
The command-line interpreter in Windows adds content to an alternate data stream 
(ADS). Example of a harmful use case: It can be used to bypass defensive 
countermeasures or to hide as a persistence mechanism.  
 

3.2.2 APT-19 attack execution stages 

Specific execution sequences focused on persistence, privilege escalation, and identity theft 
(credential access/theft) were then manually injected into this environment. The attack 
scenario took place in the following stages: 
 

1. Persistence: SharPersist (a C# toolkit for persistence in Windows) was used to maintain 

persistent access, which in this case was run from C:\Windows\Tasks\SharPersist.exe. 

With this tool, persistence mechanisms were created using Scheduled Tasks, services, 
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and registry keys. The created persistence ensured the presence of a backdoor, located 

in C:\Windows\Tasks\mssvc\mssvc.exe.  

 
2. Environment enumeration and privilege escalation: After ensuring persistent access, 

a vulnerability investigation of the system was conducted. Two complementary 

instruments have been used for this purpose: 

• SharpUp (C:\Windows\Tasks\SharpUp.exe): A C# implementation designed to 

quickly identify configuration errors (e.g., modifiable services) that allow escalation 

to the administrator level. 

• winPEAS.ps1 (C:\Windows\Tasks\winPEAS.ps1): A complex PowerShell script that 

performed an in-depth analysis of the system. This tool generates a significant 

number of artifacts (reading files, accessing registers), creating a specific "noisy" 

pattern in the dataset. 

Both tools perform an extensive set of checks (e.g., service configurations, access 

rights, registers, file system) in normal use, which typically translates into an increased 

number of system queries and a "noisier" profile in the logs compared to minimalist 

manual enumeration. 

 
3. Credential Access: SafetyKatz and SharpKatz were used to extract authentication 

material (NTLM and Kerberos keys/tickets) from the LSASS process. 
 

• C:\Windows\Tasks\SafetyKatz.exe – A C# tool from the GhostPack suite that acts 

as a wrapper around the well-known Mimikatz hacking tool. SafetyKatz creates a 

minidump of the LSASS process's memory using the MiniDumpWriteDump 

function to C:\Windows\Temp\debug.bin. It then loads the modified Mimikatz via 

PELoader, executes sekurlsa::logonpasswords and sekurlsa::ekeys over the dump, 

and deletes the file when finished. 

 

• C:\Windows\Tasks\SharpKatz.exe – C# port of the selected Mimikatz commands. 

 
4. Defence Evasion: The SharpKiller tool (port "AMSI-Killer" to .NET) was used to bypass 

AMSI (AntiMalware Scan Interface) by patching the in-memory check so that AMSI 

does not block malicious content. 

• C:\Windows\Tasks\SharpKiller.exe 
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3.3 Threat Landscape 

The created dataset is relevant to current research in the field of cybersecurity, as it reflects a 
shift in the paradigm of attacks from traditional executables to techniques referred to as 
"Living off the Land" (LotL) and ".NET Tradecraft". 
 

3.3.1 Detection of "Fileless" and .NET threats 

Traditional antivirus systems have long focused on file signatures on disk. The tools used in 
our dataset (SharpUp, SharpKatz, SharPersist) are often loaded directly into memory via the 
Reflective DLL Injection or Assembly Loading technique, minimizing the footprint on the disk. 
For ML models, this presents a challenge to identify anomalies in process behaviour and API 
calls, rather than relying on static file attributes. The dataset provides training data for 
detecting malicious code running in the context of a legitimate common language runtime 
(CLR). 

 

3.3.2 Abuse of Trusted Paths and Camouflage 

The placement of tools in the C:\Windows\Tasks directory is not accidental. This directory is 
often browsed by administrators because it contains a lot of legitimate system files, and at the 
same time, ordinary users also have write privilege to it in certain configurations. Combining 
this site with names like mssvc.exe simulates the sophisticated cloaking that is typical of 
Advanced Persistent Threat (APT) groups. An ML model trained on this data must learn to 
distinguish between a legitimate process and its spoofed counterpart based on contextual 
metadata (parental process, start time, absence of digital signature), not just by name. 

 

3.3.3 Bypass of modern protectors 

The inclusion of the AMSI bypass (Sharp-Killer) technique in the dataset is essential for 
simulating a sophisticated adversary. If the ML model cannot detect the telemetry disabling 
act (AMSI) itself, it becomes blind to the subsequent phases of the attack. This dataset allows 
you to train models to detect so-called "pre-exploit" activities, where an attacker manipulates 
the integrity of the monitoring system itself. 

 

3.3.4 Practical applicability 

The techniques described are currently actively used not only by state-sponsored actors, but 
also by Ransomware-as-a-Service operators (e.g., Conti groups, LockBit), who use tools such 
as SharpUp and Mimikatz variants to move laterally in the network before the data is 
encrypted. Research based on this dataset therefore has a direct impact on improving 
detection capabilities against the most widespread cyber threats today. 

  



 

 
 

  12 
 

4 Method for forensic dataset creation from CTF 

This chapter presents possible data sources and methodologies for creating datasets for digital 
forensic analysis. The chapter describes what types of sources—including CTF competitions, 
reference dataset portals, and synthetic security datasets—are suitable for obtaining relevant 
artifacts. It also discusses two approaches to dataset creation: using forensic tools and 
creating a dataset using embedded data. 
 

4.1 Possible sources of data 

As mentioned above, CTF competitions are a suitable source for creating datasets for digital 
forensic analysis, as access to real data from security incidents can be problematic and limited. 
Data from real security incidents is often not publicly available and obtaining it can be difficult 
due to the need for authorisation, legal restrictions, or personal data protection. 
 
For the purpose of creating datasets, combined sources are therefore used to simulate or 
directly access relevant artifacts and scenarios. The following data sources are practical and 
proven options that are commonly used in digital forensic analysis research and teaching: 
 
CTF and training datasets 

• DFIR CTFs Archive – a collection of various CTF tasks and datasets for DFIR training 
(disk images, artifacts) – clearly available through portals such as DFIR Training / DFIR 
CTF archives [6]. 

• Digital Corpora – freely available collection of disk images, scenarios, and artifacts, 
including various CTF scenarios and M57 Patents scenario (disk images, memory, 
PCAPs) [7].  

• Honeynet Project Forensic Challenges – competitions and forensic challenges 
(challenges and dataset packages for practicing forensic techniques) [8]. 

 
Reference dataset portals and projects 

• EVIDENCE Project – a European project focused on the exchange and standardization 
of digital evidence in practice; background and framework materials for working with 
real evidence (access to data may be limited) [9]. 

 

4.2 Dataset creation using forensic tools 

A dataset for research in the field of digital forensic analysis can be created directly using 
specialized forensic tools. Data extracted from disk images of individual CTF scenarios can be 
processed using the Kroll Artifact Parser and Extractor (KAPE) tool [10]. KAPE is one of the 
widely used tools in the field of digital forensic analysis and enables systematic, repeatable, 
and automated extraction and parsing of forensic artifacts from the Windows operating 
system. Thanks to the support of modular profiles (Targets and Modules), it is possible to 
precisely define which artifacts are to be retrieved from the system and how they are to be 
processed into a structured form suitable for further analysis. 
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In addition to the KAPE tool, separate forensic tools from the Eric Zimmerman Tools [11] set 
can also be used to create a dataset. These tools are often used in practice either directly or 
as parsing modules integrated into KAPE. These tools enable detailed analysis of specific types 
of forensic artifacts and generate outputs most often in the form of CSV files, which are 
suitable for subsequent processing using data analysis and machine learning methods. 
 
The process of creating a dataset using forensic tools involves several systematic steps that 
ensure the extraction, parsing, and evaluation of forensic data. Each step is designed to 
preserve the integrity of the original data and to ensure that the resulting dataset contains 
analytically relevant information suitable for further digital forensic analysis and experiments 
with data analysis or machine learning. 
 
The following steps were applied to create the dataset: 

1) mounting the disk image, 
2) extracting forensic artifacts using forensic tools (e.g., KAPE), 
3) parsing forensic artifacts, 
4) cleaning and preparing output data, 
5) automated and manual enrichment of output data (silver and gold labeling)  

 
In the following subchapters, we provide more detailed comments on each section. 
 

4.2.1 Mounting the disk image 

The data processing consisted of several steps. In the first step, the disk image was mounted 
in read-only mode using disk image mounting tools (e.g., Arsenal Image Mounter [12]). This 
approach ensures the integrity of the original data and eliminates the risk of unintentional 
modification during analysis, which is a key principle of digital forensic methodology. 
 

4.2.2 Extraction of forensic artifacts using forensic tools 

After successfully mounting the disk image, the KAPE tool is launched on the mounted file 
system. During the extraction phase, it is possible to use built-in "targets" that allow for the 
targeted extraction of relevant forensic artifacts. Specifically, it is advisable to use targets for 
the following artifacts: 

• $MFT (Master File Table), 
• $J (USN Journal), 
• SRUM (System Resource Usage Monitor), 
• Registry hives, 
• Amcache, 
• LNK files and Jump Lists, 
• Prefetch files, 
• Windows Event Logs, 
• Recycle Bin, and 



 

 
 

  14 
 

• Windows Timeline. 
 
These artifacts are essential sources of information about user activity, application launches, 
file operations, and system events, and are therefore crucial for incident reconstruction and 
analysis of potentially malicious activity. More information about forensic artifacts on the 
Windows operating system can be found in deliverable - D12 Method for automated collection 
of digital evidence. 
 

4.2.3 Parsing forensic artifacts 

The following KAPE tool modules and relevant tools from Eric Zimmerman can be used for the 
above-mentioned forensic artifacts: 
 

• AmcacheParser.mkape – using the AmcacheParser tool [13]. 

• AppCompatCacheParser.mkape – use of the AppCompatCacheParser tool [14]. 

• EvtxECmd.mkape – use of the EvtxECmd tool [15]. 

• JLECmd.mkape – using the JLECmd tool [16]. 

• LECmd.mkape – using the LECmd tool [17]. 

• MFTECmd.mkape – using the MFTECmd tool [18]. 

• PECmd.mkape – using the PECmd tool [19]. 

• RBCmd.mkape – using the RBCmd tool [20]. 

• RECmd_AllBatchFiles.mkape – using the RECmd tool (processing all batch files) [21]. 

• SBECmd.mkape – using the SBECmd tool [22]. 

• WxTCmd.mkape – using the WxTCmd tool [23]. 

• SrumECmd.mkape – using the SrumECmd tool [24]. 
 
These parsers transform raw forensic artifacts into a structured form, resulting in CSV files 
that represent individual artifact types and their attributes. 
 

4.2.4 Cleaning and preparing output data 

The output files are CSV files containing selected forensic artifacts, whose structure and 
number may vary depending on: 

• the version of the Windows operating system, 
• system settings, 
• the number of user accounts (more users lead to more output files), 
• the availability of specific mechanisms (e.g., SRUM is not present in all OS versions). 

 
Console logs, which are generated by the KAPE tool during runtime by default, should be 
removed from the outputs as they do not represent analytically relevant data for the purposes 
of creating a dataset. It is also advisable to exclude the PECmd parser output in the form of a 
timeline, as the standard CSV output of this tool contains more detailed and analytically 
valuable information. 
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4.2.5 Automated and manual enrichment of output data 

The extraction and parsing of forensic artifacts is followed by a phase of enriching the output 
data, which is based on identifying the time windows during which malicious activity took 
place. The time windows for individual datasets are determined primarily on the basis of 
publicly available descriptions of CTF scenarios (CTF write-ups), which specify the course and 
time frame of the incident, or on the basis of manual forensic analysis of specific CTF cases. 
 
All outputs from Eric Zimmerman Tools are then automatically analyzed. As part of this 
analysis, attributes containing timestamps (so-called silver labeling) are identified in each CSV 
file. Based on their comparison with the defined incident time window, each row of data is 
evaluated as follows: 

• value 1 if at least one timestamp in the row falls within the identified security incident 
time window, 

• value 0 if no timestamp in the row belongs to this time window. 
 
When evaluating individual datasets, other important time milestones known from CTF 
scenarios are also taken into account. Typically, these include the time of operating system 
installation, the start and end of the incident (incident timeframes), and the time of system 
seizure or digital evidence collection. Information about the installation of the system is used 
to trim the data, as records prior to this time should not be present in the system and their 
timestamps are highly likely to have been modified. From the time of system installation until 
the start of the incident, records are evaluated as 0, during the incident as 1, and after its end 
until the time of securing again as 0. Records after the system was secured are removed from 
the dataset again, as no new legitimate artifacts should be added to the system after this point 
and their timestamps would inevitably be changed. 
 
Examples of timeframes for some CTF case studies are shown in Tab. 1. 
 

Case Install OS  Incident timeframes 
Collection of 
evidence 

NIST Data 
Leakage 
Case 

2015-03-22 
14:34:26  

2015-03-23 13:29 - 2015-03-23 16:43,  
2015-03-24 09:26 - 2015-03-24 17:06, 
2015-03-25 10:46 - 2015-03-25 11:30 
 

2015-04-23 
10:58:22 

SSS - DC 
2020-09-17 
16:43:59 

2020-09-19 02:19 - 2020-09-19 02:35 
 

2020-09-19 
04:51:27 

SSS - 
Desktop 

2020-09-18 
05:47:03 

2020-09-19 02:35 - 2020-09-19 08:52 
2020-09-18 
22:18:11 

Magnet CTF 
2019 

2018-07-28 
07:27:53 

2019-03-18 18:35:00 - 2019-03-18 
19:08:57 

2019-03-20 
21:29:33 

Magnet CTF 
2020 

2020-02-14 
02:10:21 

 
2020-04-22 
21:55:30 
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Magnet CTF 
2022 

2022-02-04 
07:05:47 

2022-02-10 18:23  - 2022-02-12 02:20 
 

2022-02-13 
15:52:20 

Table 1 – Time frames for selected CTFs 
 
Exceptions to this procedure are outputs that do not contain any time attributes (e.g., some 
CSV files extracted from Windows registries). In these cases, it is not possible to determine 
the relationship of the record to the incident based on time, and therefore these records are 
assigned a value of N/A (not applicable). 
 
In addition to automated time evaluation, it is advisable to supplement the dataset with 
manual labeling (so-called gold labeling). In the case of CTF scenarios, a detailed manual 
forensic analysis is performed, based on which records that are directly related to a security 
incident with a high degree of certainty are marked with a value of 1. Other records are not 
clearly evaluated, as it is not possible to assign a value of 0 (clearly unrelated to the security 
incident) to some of them, while others need to be labeled "unknown" because it was not 
possible to determine with certainty their relationship to the security incident. 
 
This means that records can be rated in several ways: either automatically based on their 
classification within the time frame of the incident (silver labeling) or manually based on an 
assessment of whether a specific record from the forensic output is relevant or irrelevant to 
the security incident in question (gold labeling). 
 
 

4.3 Creating an embedding dataset 

At the input of the embedding-based dataset construction pipeline, we use the output of the 
Plaso forensic framework [25], specifically the supertimeline, which represents a 
chronologically ordered aggregation of forensic artifacts extracted from the disk image. The 
supertimeline integrates events from multiple sources (e.g., file system metadata, registry 
entries, event logs, browser artifacts), providing a unified temporal view of system activity. 
 
To make this raw forensic timeline suitable for machine learning–based analysis, a multi-stage 
transformation process was applied, consisting of the following steps: 

1) marking data according to the incident time windows listed in the table (ADD), 
2) trimming the system installation and image backup time, 
3) creating a delta for every two records, 
4) column selection, 
5) combining selected columns into a text field,  
6) filtering the scaler on all deltas, 
7) training the tokenizer on all texts, 
8) dividing into windows, 
9) creating embeddings from text in windows, and 
10) returning embeddings, deltas, labels as triples. 
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4.3.1 Marking data according to incident time windows (ADD) 

Each supertimeline record was annotated based on predefined incident time windows, which 
were derived from prior knowledge of attack execution times (ground truth). These time 
windows represent periods during which malicious activity is known to have occurred. Records 
falling within these windows were labeled accordingly, enabling supervised or semi-
supervised learning. This step establishes a direct temporal linkage between forensic artifacts 
and attack phases. 
 

4.3.2 Trimming system installation and image backup artifacts 

To reduce noise and prevent bias in the dataset, we removed timeline segments 
corresponding to operating system installation, initial configuration, and forensic image 
acquisition or backup activities. These phases typically generate dense but non-relevant 
forensic artifacts that can dominate the timeline and distort temporal patterns unrelated to 
attacker behavior. 
 

4.3.3 Delta computation with logarithmic scaling 

For each pair of consecutive records in the supertimeline, we computed a temporal delta, 
defined as the difference between their timestamps. This delta captures the temporal 
dynamics of system activity rather than absolute time values. 
To mitigate the effect of extreme timestamp gaps (e.g., system inactivity, shutdown periods), 
the deltas were transformed using logarithmic scaling, which stabilizes variance and improves 
robustness for downstream ML models. 
 

4.3.4 Feature (column) selection 

From each Plaso record, we selected a subset of semantically meaningful attributes commonly 
used in forensic interpretation: 

• user – the user context associated with the event 
• host – the system or hostname 
• desc – human-readable description of the artifact 
• MACB – file activity semantics (Modified, Accessed, Changed, Birth) 
• sourcetype – origin of the artifact (e.g., NTFS, Registry, EVTX) 
• type – artifact or event type 

 
This selection balances contextual richness with dimensionality reduction. 
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4.3.5 Textual fusion of selected attributes 

The selected columns were concatenated into a single textual representation per timeline 
record. This transformation converts heterogeneous forensic metadata into a unified text 
format, making it compatible with natural language processing (NLP)–based embedding 
models. 
 
At this stage, records originating from all disk images and experiments were merged into a 
single consolidated dataset, ensuring consistent tokenization and embedding space across all 
samples. 
 

4.3.6 Fitting the delta scaler 

A global scaler was fitted on all computed delta values across the entire dataset. This scaler 
was later applied uniformly during model training and evaluation, ensuring consistent 
normalization of temporal features across different samples and scenarios. 
 

4.3.7 Training the tokenizer on forensic text 

A tokenizer was trained on the complete corpus of forensic text representations. Training the 
tokenizer on domain-specific forensic language (e.g., registry paths, executable names, event 
descriptions) allows the embedding model to better capture the semantics of digital forensic 
artifacts compared to generic tokenizers. 
 

4.3.8 Windowing of the supertimeline 

The continuous supertimeline was segmented into fixed-length windows, each representing 
a short temporal context of system activity. Windowing enables the model to learn local 
behavioral patterns and temporal correlations between events, rather than treating each 
record in isolation. 
 
Each window can be interpreted as a micro-sequence of forensic activity corresponding to a 
potential attack phase or benign system operation. 
 

4.3.9 Embedding generation from windowed text 

For each window, embeddings were generated from the aggregated textual content using the 
trained tokenizer and embedding model. These embeddings encode the semantic and 
contextual information of forensic events into dense vector representations suitable for 
downstream ML tasks such as classification, clustering, or anomaly detection. 
 



 

 
 

  19 
 

4.3.10 Output construction 

The final dataset consists of triples: 
• Embeddings representing semantic event context, 
• Temporal deltas capturing timing dynamics, 
• Labels derived from incident window annotations. 

 
This structured output enables hybrid modeling approaches that jointly exploit semantic, 
temporal, and supervisory information, providing a robust foundation for advanced forensic 
analysis and attack detection experiments 
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